If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+144t+100=0
a = -16; b = 144; c = +100;
Δ = b2-4ac
Δ = 1442-4·(-16)·100
Δ = 27136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27136}=\sqrt{256*106}=\sqrt{256}*\sqrt{106}=16\sqrt{106}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-16\sqrt{106}}{2*-16}=\frac{-144-16\sqrt{106}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+16\sqrt{106}}{2*-16}=\frac{-144+16\sqrt{106}}{-32} $
| 81h^2–4=0 | | -16t^2+144t+100=- | | -64=-5x=9 | | 12n+2=-49 | | -3(3x+15)+(-10-x)=35 | | n+-2=6 | | x^2+22x+225=0 | | (2x+1/3)+16=3x | | (x+1)/3+(x+2)/7=2 | | 74f=6,179 | | -4(-3x+7)=64 | | m^2–23m+22=0 | | -4(-3x+7=-64 | | 1/4x+3/4+3/8x=13/4-3/4 | | -x+7x=5 | | 5t+15=-14 | | -7=-6+x | | -16+(x/2)=35 | | 3y+1=3y+3 | | -2x-3-13=-7 | | 2a+4=78 | | 2(3x)+5(2x)-20=236 | | 11-(x/8)=15 | | -2x-3-13=-78 | | 7x+3(-3x-6)=195 | | 3(2x+3)=2(3x-6) | | 10x+24=6x+4 | | n/2+35=39 | | -2x-3-13=45 | | n/4+15=23 | | 28=-7-(5x) | | n/7+6=34 |